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We consider a two-dimensional �2D�electron gas residing on the surface of a cylinder of a given radius R in
the presence of a parabolic confinement along the axis of the cylinder. In this way the system of electrons
forms a closed cylindrical stripe �wire�. Using the local spin-density technique we first consider localization of
electrons within of a potential barrier embedded in the wire. Barriers with sharp retangularlike features are
populated in steps because of Coulomb blockade. The nature of a single bound state in a short soft barrier
�quantum point contacts� at pinch-off is discussed in terms Coulomb blockade. For a shallow barrier-free wire
we retrace the structural transitions at low electron densities from a single chain of localized states to double
and triple chains �Wigner spin lattices�. The present system is related to the model of a inhomogeneous
quantum wire introduced recently by Güçlü et al. �Phys. Rev. B 80, 201302�R� �2009��. An important aspect
is, however, the present extension into higher electron densities as well as to the low-density regime and the
formation of 2D Wigner microlattices.
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The role of the many-body interactions in low-
dimensional semiconductor nanodevices is well recognized
�for recent overviews see1,2�. For instance, delicate details of
ballistic electron transport such as the 0.7 conduction
anomaly in quantum point contacts �QPCs� may be under-
stood only within the framework of many-body electron
theory. The importance of spontaneous spin polarization was
recognized already at the first observations of this
phenomenon3 and later this idea has been extensively devel-
oped by many authors.1,2 Also here we will pursue this line.

Previous studies of the spin-polarization phenomena in
QPCs, quantum wires, etc., have mostly focused on cases for
which interaction-induced wave-function localization has
been less prominent. In general these cases refer to strong
geometric confinement and electron densities that are rela-
tively high. More recently, however, the regime of weak con-
finement and very low electron densities has become acces-
sible experimentally by the important development of high-
mobility top gate heterostructures and QPCs.1 Thus recent
conductance measurements indicate the incipient formation
of a Wigner electron lattice and row coupling in such
systems.4,5 Previously Wigner crystallization in low-
dimensional structures has been anticipated on theoretical
grounds. For example, the effect of exchange interactions on
the conductance of a quantum wire in the Wigner-crystal
regime has been studied by Matveev and collaborators.6,7

Most recently Güçlü et al.8 have performed quantum Monte
Carlo simulation of an inhomogeneous quasi-one-
dimensional �Q1D� single-mode system with the strong in-
teractions and confinement. Q1D lattices with strong antifer-
romagnetic correlations appeared to be favored within a
certain low-density barrier region �see below�. Qualitatively,
similar results have been obtained for the spin-Peierls tran-
sition in quantum wires and quantum rings by means of the
self-consistent local spin-density approximation �LSDA�.9
�We recall that a spin symmetry-broken LSDA solutions re-
flect the true correlations inherent in the corresponding prop-
erly symmetry-restored state obtained from, for example, ex-

act digonalization techniques. We will have this in mind as
we discuss below, for example, antiferromagnetic states.9� In
view of the experimental development there is an apparent
need to extend previous studies to the regime of weak con-
finement and very low electron densities where interaction-
induced localization of electrons is expected to be strong.

The outline of the presentation is the following. Below we
describe the electron localization in a parabolic quantum
wire with an embedded barrier8 as well as the formation of a
two-dimensional �2D� Wigner spin lattice in a barrier-free
shallow wire. In both cases we have taken into account
exchange-correlation potentials in accordance with LSDA
�for details of a typical LSDA device modeling see, for ex-
ample, Ref. 10�. As a result, we have found interaction-
induced multirow localization of electrons in the low-density
regime. We have also followed the crossover between the
localized and extended state regimes. As in Ref. 8 we have
found the formation of a Q1D antiferromagnetic ordering
�correlations� inside the barrier region and also shown that
the localization is strongly dependent on the sharpness and
length of the potential barrier. Localized states such as two
distinct strands,4,5 double zigzag and triple-row spin lattices
have been demonstrated as well. There is a certain overlap of
the first part of the present study with that of Güçlü et al.,8 a
circumstance that we utilize for validation and calibration of
our approach. Because of the computational ease of LSDA
we have readily extended previous simulations to higher
electron densities. The second part of the Brief Report ad-
dresses the new regime of very low electrons densities and
shallow confinement.

As a model, we consider a two-dimensional electron gas
residing on the surface of a cylinder of a given radius R in
the presence of a parabolic confinement along the y axis of
the cylinder. In this way the system of electrons forms a
closed cylindrical stripe. If a barrier region �gate potential� is
introduced as in Ref. 8 we have the total confinement poten-
tial
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Vconf =
1

2
m��2y2 + Vg�tanh�s�� + �0�� − tanh�s�� − �0��� ,

�1�

where the first term is a transverse confining parabolic po-
tential for electrons with effective mass m� whereas the sec-
ond term defines the barrier along the ring; s and Vg are
parameters which specifies the steepness and the height of a
barrier, � is the azimuthal angle and �0 gives the position of
the barrier. For later use we introduce the notation x=R�
with −R��x�R�. Our model system is closely related to
the choice of Güçlü et al.8 In our case, however, we deal
with a cylindrical geometry whereas they focus on a planar
circular device. This difference may be of principle interest
but as it turns out it has little impact on the final numerical
results, in particular for large values of R. The model poten-
tial in Eq. �1� may generally be applied to a wide range of
situations, from shallow 2D top gated devices11,12 and wires
to Q1D QPCs.1 The above potential should be relevant also
for the new generation of quantum rods and pillars that is
forthcoming.

For later comparison with the results of Güçlü et al.8 we
choose parameters in the same range as used by them. Typi-
cally, the system has a circumference of 1.57 �m and is
limited in the y direction to �40 nm. The barrier is effec-
tively rectangular for s in the range of 4 or higher8 but at
lower values of s the edges become smoothed and eventually
the barrier becomes more like a conventional QPC saddle
potential.

In the present case spatial and spin distributions are ob-
tained from the self-consistent solution of the Kohn-
Sham �LSDA� equations for the occupied electron orbitals
	k


�
= �
1
2 �,

H
	k

 = Ek


	k

, �2�

which obey cyclic boundary conditions. The single orbital
Hamiltonian H
 in Eq. �2� is the sum of the confinement
potential �Eq. �1��, the usual kinetic-energy operator and the
terms which describe the Coulomb, exchange and correlation
energies in the 2DEG at a GaAS/AlGaAs interface �explicit
forms for these terms may be found elsewhere, for example,
in Ref. 10�. The above self-consistent LSDA equations have
been solved iteratively for a given chemical potential or
number of electrons using numerical discretization. Conver-
gence was ensured by repeated calculations for each set of
parameters, each time starting with new separate random po-
tentials for the two spin directions. It was found that the
correlation potential is of great importance since ferromag-
netic solutions were found without correlation whereas no
such solutions could be found for the single chain when cor-
relation was included. Furthermore, sufficient numerical res-
olution was achieved by increasing the number grid points
until the same self-consistent results obtained.

In a first step we have analyzed the barrier population N
as function of barrier height Vg at fixed values of the chemi-
cal potential �. Integrating the total electron density n�x�
within the region �����0, one thus finds for steep barriers
quite a distinct and rich steplike behavior of N as function of

gate voltage Vg. The states within the barrier region are then
well localized and disconnected from the outer region. The
localization occurs already on a one-electron level because of
the strong reflections and wave function buildup at the two
ends of the barrier. Because of Coulomb blockade there is a
step-wise filling of the states within the barrier as noted al-
ready in.8 An extension to more electron rich cases are
shown in Fig. 1 for three different values of the chemical
potential. The degree of localization and number of electrons
localized to barrier region obviously depend on the steepness
parameter s and the height of the barrier Vg. For example, if
s becomes smaller the separation between barrier and sur-
rounding regions is blurred and there is a crossover to a
smooth continuous filling of the barrier region, i.e., the bar-
rier region becomes open �referred to as a “liquid state” by
Güçlü et al.8�. This also happens at higher fillings as indi-
cated in Fig. 1 for �=40 meV. The special case of a rem-
nant single bound state in the crossover region is discussed
below.

We now turn to the question about spin and charge corre-
lations among the electrons localized within the barrier, i.e.,
above pinch-off. We have searched for both antiferromag-
netic and ferromagnetic order within a wide range of the
parameters involved. Generally our LSDA results agree well
with those of Güçlü et al.8 which is as an important valida-
tion of our computational scheme. Thus we have found an
abundance of charge-ordered antiferromagnetic LSDA solu-
tions trapped by the two barriers. At the same time we were
not able to recover ferromagnetic LSDA solutions for any of
the parameters used. This result is in sharp contrast to similar
LSDA simulations for conventional split-gate QPCs �Refs. 1
and 13� which seems to point to an important dependence on
device geometry.

The pinch-off region is intriguing as discussed already in
Ref. 8. Figure 2 shows an almost depleted barrier for s
=1.4, i.e., a “soft barrier.” At s=2.4, however, a single elec-
tron has entered the region, i.e., there is a distinct peak in the
electron density corresponding to one electron residing in-
side the barrier. The corresponding wave function is to a
good approximation a Gaussian function indicating a rather
shallow parabolic potential in the interior of the barrier. In
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FIG. 1. �Color online� Number of electrons N inside a steep
barrier with s=15 and �0=1.5 as a function of a gate potential Vg in
units of effective Hartree units H� �=11.9 meV in GaAs�.
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addition, with increasing s the pile-up of charge and potential
at the two ends of the barrier increase. As a consequence the
localized state in Fig. 2 simply derives from electrostatic
forces and Coulomb blockade. For this reason exchange and
correlations potentials have little impact on this mechanism.
Because of spin degneracy an isolated state of this kind
should therefore be a fluctuating one.

The single electron state in Fig. 2 is quite fragile. For
example, we find that on increasing the electron density in
the system for the given s value the peak quickly delocalizes.
A slight softening of the potential has a similar effect. Figure
2 thus refers to a transition region in which localization is
about to set in. Güçlü et al.8 have suggested that the single
peak is related to the Kondo scenario for the 0.7 conduction
anomaly in QPCs.14 Because of the unstable nature of the
singly occupied localized state around pinch-off we rather
propose that it is related to the conduction features discov-
ered by Yoon et al.15 at and below pinch-off of a QPC.

The cases above all refer to barriers embebbed in single-
mode quantum wires with strong transverse confinement. We
now turn to the case of shallow confinement that relates to
certain 2D low-density top gate devices.4,5,11,12 To accommo-
date more localized states we let Vg=0, a step that does not
change the overall qualitative features. In the calculations we
have assumed that the total number of electrons is fixed.
Results for systems with ��=0.595 meV containing 4, 16,
and 44 electrons are shown in Figs. 3–5, respectively. The

sequence shows how a single row of localized states in the
four-electron system �two up- and two down-spin electrons
in Fig. 3� transforms first to a double zigzag structure for 16
electrons �eight up-spin and eight down-spin electrons as in
Fig. 4� and then to a more complex structures such as the
triple-row microlattice for 44 electrons �22 up- and 22 down-
spin electrons in Fig. 5�. The wave functions corresponding
to Figs. 3–5 are basically tight-binding states consisting of
linear combinations of Gaussians functions, one for each
electron and spin. The model may obviously be extended to
large-size arrays of spins and realistic top gate 2D
devices.11,12

The complex multichain structures in shallow wires occur
because the electrons are given more space in which they
may localize to reduce the interaction energy at little cost for
the increase in kinetic and parabolic confinement energies.
The very fact that “structural transitions” occur as the elec-
tron density is increased agrees in general terms with Monte
Carlo simulations for classical screened particles16 as well as
for Heisenberg-type Hamiltonians.6,7 The separation into, for
example, spatially phase-shifted zigzag sublattices for up and
down electrons as here is, however, a specific quantum fea-
ture in a regime that has not been explored previously within
LSDA. The multichain structures should lead to unusual con-
ductance crossovers as observed, for example, in Refs. 4 and
5 for shallow wires. This indicatse that there are more than
one chain that contribute to total conductance. For specific
cases with even number of electrons as, for example, in Fig.
4 we have found just antiferromagnetic arrangements of
spins. For different number of electrons, odd or even, more
complex charge and spin arrangements are found as dis-
cussed also in Refs. 6 and 7.
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FIG. 3. �Color� Localization of four electrons �two up- and two
down-spin electrons� in the wire without a barrier: ��
=0.595 meV.
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FIG. 4. �Color� Double zigzag structure in the case of a wire with 16 electrons �eight up- and eight down-spin electrons� for ��
=0.595 meV; �a� and �b� refer to up- and down-spin densities, respectively, and �c� to the total density.
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In summary, the present results for the spatial electron
distributions and spin correlations in a cylindrical wire with
an embedded barrier are in a good qualitative agreement with
the quantum Monte Carlo computations for an analogous
circular ring8 and for a finite Q1D ring with a small number
of electrons.9 Because of the ease of using LSDA we have
been able to extend previous studies to a large number of
electrons and different situations, from sharp barriers to shal-
low confinement at low densities. In the first case the local-
ization within the barrier region is basically due to the strong
reflections at the two ends of the barrier. These states are
occupied by electrons one at a time and we have recovered
an extended Coulomb staircase for this case. Spin correla-
tions are generally antiferromagnetic in contrast to conven-
tional split-gate QPCs.1,2,10 This difference is an effect of the
specific geometries used in the two cases. When the barrier

in Eq. �1� is made softer the degree of localization decreases
and eventually vanishes in the pinch-off region as in Fig. 2.
In this region we also find a localized one-electron state as
did Güçlü et al.8 who associated this state with the Kondo
scenario for the 0.7 conduction anomaly in a QPC.14 We
have found, however, that this state which derives from
Coloumb blockade is very volatile and easily vanishes when,
for example, the electron density is increased via Vg. For this
reason we propose that the state might be related to the reso-
nance observed by Yoon et al.15 close to pinch-off and not to
the Kondo mechanism as above.

In the case of cylindrical rings with shallow transverse
confinement there is clear evidence of electron localization
in the low electron-density regime where the Coulomb inter-
action energy overcomes the kinetic and parabolic confine-
ment energies. On increasing the number of electrons there
are structural transitions. Thus we have found interaction-
induced bifurcations of single row �Fig. 3� into two �Fig. 4�
and three �Fig. 5� distinct rows. Structures of these kinds
may be responsible for the anomalous behavior in the shal-
low confinement limit for which conduction measurements
suggest the formation of multichains4,5 as well as impurity-
assisted lattices.11,12 These results invite further experimental
and theoretical work, in particular, on ultralow density sys-
tems.

We are grateful for discussions with I. Abrikosov, H. U.
Baranger, J. Bird, T. M. Chen, and M. Pepper and for support
from the Swedish Research Council.

*Present address: University of Konstanz, Department of Physics,
D-78457 Konstanz, Germany.
1 K.-F. Berggren and M. Pepper, Philos. Trans. R. Soc. London,

Ser. A 368, 1141 �2010�.
2 J. Phys.: Condens. Matter 20, 160301-165210 �2008�, special

issue on the 0.7 feature and interactions in one-dimensional sys-
tems, edited by M. Pepper and J. Bird.

3 K. J. Thomas, J. T. Nicholls, M. Y. Simmons, M. Pepper, D. R.
Mace, and D. A. Ritchie, Phys. Rev. Lett. 77, 135 �1996�.

4 W. K. Hew, K. J. Thomas, M. Pepper, I. Farrer, D. Anderson, G.
A. C. Jones, and D. A. Ritchie, Phys. Rev. Lett. 102, 056804
�2009�.

5 L. W. Smith, W. K. Hew, K. J. Thomas, M. Pepper, I. Farrer, D.
Anderson, G. A. C. Jones, and D. A. Ritchie, Phys. Rev. B 80,
041306�R� �2009�.

6 A. D. Klironomos, J. S. Meyer, T. Hikihara, and K. A. Matveev,
Phys. Rev. B 76, 075302 �2007�.

7 J. S. Meyer and K. A. Matveev, J. Phys.: Condens. Matter 21,

023203 �2009�, and references within.
8 A. D. Güçlü, C. J. Umrigar, H. Jiang, and H. U. Baranger, Phys.

Rev. B 80, 201302�R� �2009�.
9 S. M. Reimann and M. Manninen, Rev. Mod. Phys. 74, 1283

�2002�.
10 K.-F. Berggren and I. I. Yakimenko, Phys. Rev. B 66, 085323

�2002�.
11 C. Siegert et al., Nat. Phys. 3, 315 �2007�.
12 L. S. Moore and D. Goldhaber-Gordon, Nat. Phys. 3, 295

�2007�.
13 K.-F. Berggren and I. I. Yakimenko, J. Phys.: Condens. Matter

20, 164203 �2008�.
14 S. M. Cronenwett, H. J. Lynch, D. Goldhaber-Gordon, L. P. Kou-

wenhoven, C. M. Marcus, K. Hirose, N. S. Wingreen, and V.
Umansky, Phys. Rev. Lett. 88, 226805 �2002�.

15 Y. Yoon et al., Appl. Phys. Lett. 94, 213103 �2009�.
16 G. Piacente, I. V. Schweigert, J. J. Betouras, and F. M. Peeters,

Phys. Rev. B 69, 045324 �2004�.

-400 -200 0 200 400

-100

0

100

X

Y

������������������������

����������

������������������

x [nm]

y [nm]

FIG. 5. �Color� Three row spin-lattice in the case of a wire with
44 electrons �22 up- and 22 down-spin electrons� for ��
=0.595 meV.

BRIEF REPORTS PHYSICAL REVIEW B 82, 073307 �2010�

073307-4

http://dx.doi.org/10.1098/rsta.2009.0226
http://dx.doi.org/10.1098/rsta.2009.0226
http://dx.doi.org/10.1103/PhysRevLett.77.135
http://dx.doi.org/10.1103/PhysRevLett.102.056804
http://dx.doi.org/10.1103/PhysRevLett.102.056804
http://dx.doi.org/10.1103/PhysRevB.80.041306
http://dx.doi.org/10.1103/PhysRevB.80.041306
http://dx.doi.org/10.1103/PhysRevB.76.075302
http://dx.doi.org/10.1088/0953-8984/21/2/023203
http://dx.doi.org/10.1088/0953-8984/21/2/023203
http://dx.doi.org/10.1103/PhysRevB.80.201302
http://dx.doi.org/10.1103/PhysRevB.80.201302
http://dx.doi.org/10.1103/RevModPhys.74.1283
http://dx.doi.org/10.1103/RevModPhys.74.1283
http://dx.doi.org/10.1103/PhysRevB.66.085323
http://dx.doi.org/10.1103/PhysRevB.66.085323
http://dx.doi.org/10.1038/nphys559
http://dx.doi.org/10.1038/nphys610
http://dx.doi.org/10.1038/nphys610
http://dx.doi.org/10.1088/0953-8984/20/16/164203
http://dx.doi.org/10.1088/0953-8984/20/16/164203
http://dx.doi.org/10.1103/PhysRevLett.88.226805
http://dx.doi.org/10.1063/1.3142418
http://dx.doi.org/10.1103/PhysRevB.69.045324

